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ABSTRACT 

Spacecra€t s t ructural  systems and subsystems a r e  subjected to a 

number of qualification tes ts  in which the proof loads a r e  chosen a t  some 

level above the simulated loads expected during the space mission. 

f racture  as  prime failure mechanism, and alluwing for time effects due to 

cyclic and sustained loadings, this paper t rea ts  an optimization method in 

which the statist ical  variability of loads and mater ia l  properties a r e  taken into 

account, and in which the proof load level i s  used as  an additional design 

variable.  

function while the total expected cost due to coupon testing for mater ia l  

characterization, due to failure during proof testing, and due to mission 

degradation i s  a constraint. Numerical results indicate that for a given 

expected cost constraint ,  substantial weight savings and improvements of 

reliability can be realiz-ed by proof testing. 

Assuming 

In the optimization process,  the s t ructural  weight i s  the objective 

vi JPL Technical Memorandum 33-470 



I. INTRODUCTION 

- 
Structural  design i s  the sizing and synthesiz- 

ing of s t ructural  elements in space for -certain 

intended purposes.  Although the purposeful geo- 

metr ical  arrangement  of the s t ructural  elements 

can be accomplished with adequate, better,  o r  

optimum resul ts ,  in s t ructural  optimization it i s  

usually assumed that the geometrical  configura- 

tion of the s t ructure  is  given a s  constant. 

also assumed that the design and optimization a r e  

performed with the s izes  of the individual s t ruc-  

tu ra l  elements being used a s  generalized coordi- 

nates. These coordinates a r e  varied to de te r -  

mine,  within specified constraints,  those values 

that will yield an  extremism of a given objective 

function. 

It is 

The objective function to  be extremized may 

be s t ructural  weight, cost ,  reliability, etc. In 

many c a s e s ,  i t  is necessary to determine how 

weak the s t ructural  elements can be designed with- 

out resulting in too many failures.  

this weakness, one should recognize that s t ruc-  

tu ra l  loads and s t ructural  strength properties a r e  

satist ical  variables and, therefore ,  it is  not pos- 

sible to eliminate &l s t ructural  failures.  

will always be a finite probability of s t ructural  

failure,  and the most  one can hope for  i s  to limit 

this probability to a tolerable value. 

JPL Technical Memorandum 33-470 

Indetermjning 

There 

Thus,  the 

des i re  to set  the probability of failure a s  low a s  

possible, i. e . ,  to set  the s t ructural  strength as 

high as possible,  i s  unfortunately countered by the 

necessity of reducing the s t ructural  weight to a 

minimum and/or by the necessity of keeping costs 

within tolerable limits. It follows that an increase 

in s t ructural  reliability (probability of s t ructural  

survival)  must  usually be paid for  by an  increase 

in weight, o r  cost ,  o r  both. 

Once the s t ructural  i s  designed and built,  the 

question then a r i s e s  concerning the reliability of 

the particular structure.  

tion i s  not simple.  

design before building the s t ructure ,  taking into 

account the statist ical  variabilities of mater ia l  

propert ies ,  loads, and other measurable  param-  

e t e r s ,  become meaningless when, during the 

manufacturing process ,  an e r r o r  is committed 

that was not allowed for in the design. 

The answer to  this ques- 

The most careful analysis and 

In a sta- 

Y i s t i c a l  sense ,  such e r r o r s  could be allowed for in 

the design procedure if  es t imates  of their  proba- 

bility of occurrences and severity a r e  included in  

the reliability evaluation of the s t ructure .  

ever ,  for  s t ructural  systems involving new proc-  

e s s e s  and techniques, such est imates  a r e  by 

necessity very  vague because of the lack of infor- 

mation on which to base them. 

How- 

1 



Therefore,  one is left with two essential  con- 

tributions to the statist ical  strength variability of 

the structure:  

measurable quantities, such as mater ia l  proper-  

t i es ,  dimensions, e tc . ,  and ( 2 )  the statist ical  var-  

iability of chance events, such as gross  e r r o r s  

during design, gross  e r r o r s  during fabrication, 

etc. 

variability due to measurable quantities is con- 

sidered. It can be shown later  that  a s  f a r  as 

s t ructural  reliability is concerned this considera- 

tion is on the safe side. 

which may become available regarding chance 

events, can be incorporated in  the s t ructural  

strength distributions without causing a change in 

the basic approach as se t  forth in  this report .  

(1) the statist ical  variability of 

In this report ,  only the statist ical  strength 

Additional information, 

Spacecraft s t ructural  systems and subsystems 

a r e  subjected to a number of qualification tes t s  in 

which the s t ructural  components must  withstand 

specified environments (proof loads) that a r e  in- 

tended to simulate the various types of induced 

s t r e s s e s  a t  some level above those expected dur -  

ing the space mission. 

proof-load tes t s  is to eliminate those s t ructures  o r  

s t ructural  components that are too weak. 

- 
The purpose of these 

It is  c lear  that after the s t ructural  system o r  

subsystem has passed the proof-load tes t s ,  i ts  

statist ical  strength character is t ics  a r e  radically 

changed. F o r  instance, assuming negligible t ime 

effects during proof-s t ress  application, the sta- 

t ist ical  strength distribution, at the particular 

point under consideration in the s t ructure  after the 

tes t ,  will be truncated at  the lower end up to the 

proof-s t ress  level. A s imilar  statement is  t rue  

for  the proof load applied to a s t ructure  and the 

result ing truncated overal l  s t ructural  strength 

distribution. This truncation eliminates,  through 

the proof tes t ,  preciselythat  portion of the strength 

distribution that is least  known and that has the 

greatest  interaction with the applied load distribu- 

tion (Fig. 1). Reference 1 contains some impli- 

cations of screening out weak elements 

proof tes t  when the proof- s t r e s s  distributions a r e  

s imilar ,  d i ss imi la r ,  and identical to the applied- 

load induced s t r e s s e s ;  Ref. 1 also includes some 

simple aspects of optimum designs.  

::‘I a 

Reference 2 introduces the proof-load tes t  . 
level a s  a design parameter .  It i s  shown in Fig. 1 

that the choice of the proof-load tes t  level consid- 
erably influences the reliability of the s t ructure .  

In the associated optimization problem, with 

weight as the objective function and total expected 

cost as a constraint ,  Ref. 2 indicates that an opti- 

mum proof-load tes t  level can usually be obtained 

with an  increase of reliability and a decrease in 

weight as compared to conventional optimum de- 

signs in which the proof load is not considered in 

the reliability evaluation. In Ref. 2 ,  the expected 

cost consisted of the expected cost of mission 

failure due to s t ructural  failure plus the expected 

cost of failed subsystems (or components) during 

proof - load testing. 

Frequently the optimum proof-load tes t  level 

is  considerably different f rom the mean s t ruc-  

tu ra l  strength. Since the probability density func- 

tion of the s t ructural  strength is usually only known 

with a certain degree of confidence close to the 

mean strength, it would be necessary,  in such 

cases ,  to establish,  through extensive specimen 

testing, strength density function at points fa r  

apar t  f rom its mean. 

stantial  additional costs to the overall  evaluation 

process  if the strength density function is not 

available. 

This effort can add sub- 

In Ref. 3 ,  this additional cost item has been 

allowed for by the fact that a l inear increase of 

testing cost was assumed with an increase of the 

difference between mean strength and proof- load 

tes t  level. The effect of this additional cost is  an 
increasing tendency to reduce the difference be- 

tween mean strength and proof-load tes t  level a s  

the additional testing cost is  increased. 

In this report ,  which includes the essential  

aspects of Ref. 4, an approach s imilar  to that in 

Ref. 3 is taken in the optimization process .  This 

approach also includes in the expected cost con- 

s t ra int ,  the cost  of establishing the truncated 

strength distribution function by specimen testing. 

Frac ture  mechanics dealing with essentially b r i t -  

tle f racture  has been chosen here  a s  an a r e a  of 

application, since fracture  mechanics design, a s  

compared to other s t ructural  design approaches 

in which considerable bulk yield occurs  before 

failure,  tends to be more susceptible to statist ical  

strength variations. The wide scatter of the re -  

sults of tes t s  leading to failure is  assumed to be 

2 JPL Technical Memorandum 3 3 - 4 7 0  



an inherent property of the mater ia l  and i s  treated 

a s  such for the purposes of this report ,  which 

concerns the investigation of trends of behavior 

ra ther  than absolutes. A detailed discussion of 

various probability models for  the characteriza- 

tion of mater ia l  properties and their  implications 

with respect to specimen size i s  given in Ref. 5. 

This report  also considers volume effects and time 

effects, such as  fatigue due to  cyclic loading and 

flaw growth due to sustained loading. 

In spacecraft s t ructural  design, f racture  me-  

chanics concepts can be most readily and meaning- 

fully applied to p re s su re  vessel  subsystems. This 

report  i s  mainly concerned with pressure vessel  

design optimization, although the concepts put forth 

a r e  equally applicable in other a r e a s  of design. As 

will become apparent f rom this investigation, this 

approach tends to become more  meaningful a s  the 

systems,  subsystems, and components become less  

expensive relative to the overall  project  cost. 

JPL Technical Memorandum 33-470 3 



II. FRACTURE MECHANICS CONCEPTS 

0 

Fracture  mechanics t rea ts  failures that occur 

because of the presence of existing flaws in the 

material .  The s t r e s s  intensifications that a r e  

induced at the edges of a flaw correspondingly in- 

c rease  locally the stored energy. If this stored 

energy just ahead of the flaw tip becomes la rger  

than the energy needed to create the new surfaces 

resulting f rom an  extension of the flaw tip,  then 

the flaw increases  until energy balance has been 

restored (Ref. 6 ) .  If the applied s t r e s s  is high 

enough, or  if additional energy in some other form 

i s  applied, the energy balance at  the flaw tip will 

not be restored and catastrophic failure will occur. 

Hence, for a given flaw size,  an applied cr i t ical  

s t r e s s  exists that  causes rapid propagation of the 

flaw without fur ther  increase of the applied s t ress .  

In ductile mater ia ls  that generally have small  ini- 

tial flaw s izes ,  this cri t ical  s t r e s s  approaches the 

mater ia l  yield strength,  while in brit t le mater ia ls  

the cr i t ical  s t r e s s e s  a r e  usually less  thanthe yield 

strength of the material .  

The original work in f racture  mechanics is  

associated with the name of Griffith, who solved 

the problem of a flaw in an elastic mater ia l  (Ref. 7). 

Griffith's theory has been generalized by Irwin 

(Ref. 8)  to include plastic deformations a t  the 

crack tip. Recently, a number of authors,  e .  g. ,  

the authors of Refs. 9 and 10, have extendedthese 

investigations to include (1) the effects of the prox- 

imity of flaws to the mater ia l  surface,  ( 2 )  the 

effects of sustained loading, and (3) the effects of 

cyclic loading. 

f racture  mechanics can be put on a quantitative 

basis by the following equation: 

Mainly as a resul t  of these works,  

where a i s  the minor semiaxis of an elliptically 

shaped flaw a t  onset of rapid fracture  as shown in 

Fig. 2. 

parameter  that  depends on the ratio of applied 

s t r e s s  to yield s t ress .  

the cr i t ical  s ta te  at the outset of rapid fracture .  

On the right side of Eq. I l ) ,  c i s  ~ numer ica lcor -  

rection factor that var ies  with the location of the 

flaw with respect to the f ree  surface.  

flaws, c = 0.83  and for internal (completely em-  

bedded) flaws, c = 1. 00 (Fig. 2).  The factor Mk 

indicates the effect of flaw size compared to that 

of mater ia l  thickness. 

curves for Mk and experimentalvalues a s  functions 

Figure 3 shows that Q is a flaw shape 

The subscript  c r  denotes 

F o r  surface 

Figure 4 shows typical 

4 J P L  Technical Memorandum 3 3 - 4 7 0  



of the ratio of flaw size to mater ia l  thickness h. 

The fracture toughness K I ~  indicates the capability 

of a mater ia l  to res i s t  fracture in the presence of 

a flaw under an applied tensile s t r e s s  R (resist ing 

strength) perpendicular to the flaw plane; it is 

sometimes called the cr i t ical  s t r e s s  intensity fac- 

tor .  

of fracture for plane s t ra in  conditions. The value 

of Klc  generally depends upon such factors as heat 

treatment,  temperature ,  etc. Figure 5 gives a 

typical curve and some experimental values of KIc 

a s  a function of temperature.  

ness  is  higher for the plane s t r e s s  fracture mode 

than for the plane s t ra in  f racture  mode, with some 

transition values between these two modes. 

u r e  6 shows a typical variation of the fracture 

toughness with thickness h ,  where Kc is  the f rac-  

ture  toughness referr ing to the opening mode of 

f racture  for plane s t r e s s  conditions. 

The subscript  I re fers  to the opening mode 

The fracture  tough- 

Fig- 

If the applied s t r e s s  S perpendicular to the 

plane of a flaw is  less  than the cr i t ical  fracture 

s t r e s s  R ,  Eq. (i) has the form 

2 
a 

where K is  any applied noncritical plane s t ra in  

intensity factor.  Figure 7 shows schematically 

the applied s t r e s s  as a function of the flaw size 

parameter  a/Q along constant lines of K 

I 

and KI. 

Equations (1) and ( 2 )  a r e  the basic equations 

IC 

describing the relationship between :rack size and 

applied s t r e s s  for  the simplest case;  i. e.  , that of 

a single, short-t ime s t r e s s  application a t  a con- 

stant temperature in an inert  environment. The 

design of s t ructures  requires additional consider- 

ations beyond these.  

a s  temperature,  cyclic loading, and corrosionhave 

a pronounced influence on the fracture  character-  

ist ics of s t ructures .  Many mater ia ls  f racture  not 

only when a certain cri t ical  s t r e s s  is reached but 

also at relatively low s t r e s s e s  after being subjected 

for a certain t ime to sustained loading, o r  after a 

certain number of load cycles,  o r  any combination 

Environmental effects such 

thereof. 
which not only the level of applied s t r e s s  is  of 

importance but a lso the duration of s t ress  or  the 

number of applied s t r e s s  cycles. Such cases  in- 

volve subcrit ical  flaw growth; i. e . ,  the slow 

growth of a flaw until it reaches its cr i t ical  value 

and catastrophic fracture occurs.  Subcritical 

flaw growth is conveniently indicated by curvns of 

K I / K I ~  versus  t ime o r  cycles of loading to failure 

that a r e  determined f rom tests  on preflawed spe- 

cimens by a change in both the initial flaw size and 

the applied s t r e s s .  Figure 8 shows typical curves 

for cyclic loading, and Fig. 9 gives typical curves 

for sustained loading. 

These a r e  time-dependent cases  in 

The curves for  sustained s t r e s s  applications 

have character is t ic  trends showing that for  a given 

mater ia l  and environmental condition practically 

no flaw growth occurs until a cer ta in  threshold 

ratio of K/KIc is reached. In Fig. 9 ,  this thresh- 

old i s  approximately 0.9 for  titanium and 0.75 for  

aluminum in a liquid nitrogen environment. 

The effects of corrosive and oxidizing envi- 

ronments vary considerably for different mate- 

r ia ls ,  but they usually lower the threshold s t r e s s  

intensity values. 

breakdown process  in a number of ways. 

stance,  a s  shown in Fig. 5 ,  K I ~  depends on tem-  

perature ,  and corrosion and oxidation a r e  usually 

accelerated with increasing temperature.  

Temperature also affects the 

F o r  in- 

A typical schematic design case is shown in 

Fig. 10. It i s  assumed that the loading history is  

a s  shown in Fig.  loa,  in which a proof load is  

initially applied at  time TA, then a cyclic load is 

applied between t imes T g  and Tc,  and then a sus- 

tained load between t imes TC and TD. Also, it is  

assumed that the maximum initial embedded flaw 

size parameter  is (ai/Qi). The proof load, being 

of short  duration, has a negligible effect on sub- 

cr i t ical  flaw growth. 

loads, however, determine the maximum allowable 

operating load as indicated by the arrows in Fig. 

lob. During cyclic loading, the flaw increases  

f rom point @ t o  point @ (Fig. lob) ,  and under 

sustained loading it increases f rom point @ to 

point @ when the cr i t ical  flaw size for the applied 

operating load is reached and fracture  takes place. 

The cyclic and sustained 

JPL Technical Memorandum 33-470 5 



This design process  requires  knowledge of the 

largest  initial embedded flaw size,  which is usually 

not available. By proof loading the s t ructure ,  it is 

established that the largest  initial flaw is not 

la rger  than that indicated by point @ in Fig. 10; 

however, no knowledge is provided as to how much 

smaller  it might be. expensive. 

The preceding discussion indicates that to 

fully characterize the mater ia l  propert ies ,  a l l  the 

possible environmental and loading conditions 

must be taken into account and extensive experi-  

mental data must be generated. 

time-consuming; it can also become intolerably 

This is  not only 

6 JPL Technical Memorandum 33-470 



111. STATISTICAL ASPECTS O F  FRACTURE 

It is  recognized that the strength of mater ia l  

i s  a random variable. In fact ,  the statist ical  

properties of mater ia l  strength were investigated 

extensively (Refs, 11-15) under one-dimensional 

stress-field applications. In f rac ture  mechanics,  

the major reason for the statist ical  variation of the 

mater ia l  strength is attributed to the statist ical  

variation of the embedded flaw sizes that appear 

to be inherent characterist ics of the mater ia l .  It 

is mainly due to this fact that the strength of the 

mater ia l  is  f a r  below the theoretical value com- 

puted f rom atomic bond considerations. 

Without essential  loss of generality, a two- 

dimensional s t r e s s  field (plane s t r e s s ) ,  as com- 

monly associated with the s t r e s ses  in thin-walled 

pressure  vessels  and other thin-walled structures, 

is assumed he re  fo r  the derivation of the statist i-  

ca l  distribution of the resisting strength of the 

structure.  

Let the s t ructure  be divided into small  mate-  

r ia l  volume elements ,  each containing one flaw. 

Equations (1) and (2) a r e  then written a s  

(3 )  
- 112 = A a  KIc -112 R .  = (+) - a .  

J Mk c j  

in which R .  and S. a r e ,  respectively, the resisting 

s t r e s s  and applied s t r e s s  normal to the plane of 

the flaw of size parameter  a .  = ( a l a ) .  contained 

in the jth volume element V 

1 J 

J J 

j '  
Since a .  has by f a r  the largest  statist ical  

dispersion a s  compared to the statist ical  disper-  

sion of the other parameters  in Eqs. (3) and (4), 
it is  assumed that Ac and A a r e  deterministic 

constants . 

J 

Under the weakest-link hypothesis, which 

states that failure of the s t ruc ture  occurs when 

any one of the mater ia l  elements is  subjected to 

its cri t ical  s t r e s s ,  the statist ical  distribution of 

the resisting strength of the s t ructure  can be de- 

rived f rom that of R j ,  whereas the statist ical  dis-  

tribution of R j  can be determined f rom that of a j  

by a transformation of Eq. (3). The present state 

of technology does not allow, in most ca ses ,  the 

direct  measurement of the distribution of a. 
Therefore ,  the distribution of R j  i s  determined 

f r o m  results of uniaxial tensile tes t s  of specimens, 

henceforth re fer red  to as coupon tes ts .  

J '  

JPL Technical Memorandum 33-470 7 



Let S and R be, respectively, the applied load 

to and the resist ing strength of the s t ructure ,  and 

let  S+. and S+ be the analyzed principal s t r e s s e s  

a t  V. due to the application of S. 

+j2 a re  functions of the spatial coordinates and 

stiffness properties defining the structure.  

is  the angle between the plane of the flaw contained 

in V. and theprincipal s t r e s s  S+. l ,  the applied 

s t r e s s  normal to the plane of the flaw is then 

11 j 2  
Here,  + and 

1 j l  

If 8 .  
J 

1 3 

S. = S+ cos2 e .  t S+ sin2 e 
J j l  I j 2  j (5)  

j ’  
It is  reasonable to assume that the a 

j = 1 , 2 , 3 ,  
identically distributed and that the angles e .  
j = 1 , 2 , 3 ,  * . *  , m a r e  also statist ically independent 

and uniformly distributed between 0 and R / 2 .  Thus, 

* * *  , m a r e  statist ically independent and 

J ’  

2 
f g  (x) = fe(x) = - a ’  

j 

= o  - 
in which f (x) is the probability e 
of e .  

( 6 )  
a 0 5 x 5 -  
2 

other wise 

density function 

The probability of failure of the entire s t ruc-  

ture  due to a deterministic applied load S i s  

where S. i s  the applied s t r e s s  due to S normal to 

the plane of a .  and P[E] i s  the probability of J 
occurrence of the event E .  Equation (7)  simply 

states that the survival of the s t ructure  implies 

the survival of each volume element. 

3 

The unconditional probability of the event 
[ ~ j  I s j ] f o r  given e .  = 4, P[R~  I sjlej = SI,  

J 
follows f rom Eq. (5), 

5 S+. cos 2 9 t S+. sin2 $1 (8) 
11 12 

F o r  uniaxial tensile tes ts  (coupon tes t s )  in 

= 1 and + . 2  = 0 ,  Eq. (8) yields which +. 
11 1 

where Fk (x) i s  the distribution function of the 

uniaxial tensile strength for the jth volume ele- 

ment, and 

ju 

R. 
R = +  

j‘ cos 9 

F r o m  experience,  e . g . ,  Refs. 5 and 11-15, 

the distribution function FR (x)  of the uniaxial 

tensile strength Rc of the coupon specimen with 

volume Vc can be represented by the Weibull 

distribution 

in which x 

ing the particular mater ia l  and u i s  the unit 

volume e 

xo and k a re  parameters  character iz-  
EL’ 

The distribution function of the uniaxial fen- 

sile strength R 
lows from Eq. (11) and Refs. 1 , 5 ,  and 10-12, 

of the jth volume element fol- 
ju 

With the aid of Eqs. ( 9 ) ,  ( l o ) ,  and (12), Eq. 
(8) yields 

The unconditional probability can be obtained 

f rom Eqs. (6 )  and (13) as  follows: 

2 
(+jl t +j2  tan + 2 

S(+jl  t ‘pj2 tan S )  2 x (14) 
2 P R . -  . = 1 - -  

[ J < ’ I ]  x O  EL 
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The distribution function cf the s t ructural  strength F (S) follows then f rom Eqs.  (7) and (14) a s  R 

FR(S)  = P [ R  5 S] 1 - 

(15) 

The integration with respect to in Eq. (15), in  general ,  cannot be carr ied out analytically. If it is 

assumed that the mean value 3 = ~ r / 4  as an  approximation for  the orientation 6 Eq. (15) yields 
j j ’  

with the approximation 

The last approximation leading to Eq. (16) i s  equivalent to the cr i ter ion that f racture  occurs  when- 

ever the sum of the two principal s t r e s s e s  exceeds some cr i t ical  constant value C ;  i. e .  , 

s+, + s+2 = c (17) 

For  a spherical  p ressure  vessel  in which approximately = +2  = 4, = constant, the distribution 

function of the vessel  strength becomes 

in which V is the total mater ia l  volume of the pressure  vessel .  

It follows f rom Eqs. (16) and (18) that the distribution function of the strength of the entire s t ructure  

under two-dimensional s t ress-f ie ld  applications is  also a Weibull distribution in which the parameters  

xo and k can be obtained f rom x 

the resul ts  of coupon tes ts  by the method of moments; i .e.  , the population mean m l ,  the variance m 

and the third central  moment m3 a r e ,  respectively, equated to the unbiased sample mean El,  the var i -  

ance E2 and the third central  moment Ei3, where 

P’ 
xo and k can be estimated f rom coupon tes ts .  The estimation of x 

P ’ 
2 
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and Here 

n 

- l/k 
j=1 X" = xo(>) 

n 
- 1 2 

j = 1  

(19b) n i s  the number of coupon tes t s ,  Y .  i s  the observa- 

tion of the jth tes t  result ,  and r (.  ) i s  the gamma 

function. Equating Eq. (19a) to Eq. (19b), one 

obtains three equations for the determination of 

x xo and k. Other methods of estimation can be 

m2 = 1 
- El) 

n 
3 

C ( Y j  - P' 
- 
m3 = (n - l ) (n  - 2 )  

j = 1  found, e. g . ,  in Ref. 10. 
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IV. TIME EFFECTS 

- 
In Section 11, it was mentioned that during From Eqs. (3), (4), (20) and (21), one obtains 

cyclic loading, and during sustained loading above 

a certain threshold value, subcrit ical  flaw growth 

is expected. In this report ,  it is assumed that the 

t ime relationships of these subcrit ical  flaw growths 

a r e  representable by deterministic relations that 

a r e  determined experimentally f r o m  tests  on p r e -  

flawed coupons by varying both the flaw size and SJ 

the applied s t ress .  As can be seen from such 
in which S and S a r e ,  respectively, the s t r e s s e s  

due to cyclic and sustained loading. 

R . and Rsj  a r e  the corresponding strengths of the 

typical data as shown in Figs.  8 and 9 ,  the changes c j  s j  

case,  respectively, can be written in the general  CJ 

The t e r m s  of the ratios KI /KI~ for the cyclic and the sustained 

form jth element before the application of S c j  and Ssj .  

KI 

KIc = u(t) 

The function U ( t )  usually has  a character is t ic  

shape that can be approximated by an exponential 

( 2 0 )  decay to the threshold value. Thus 

U(t) = b t re-t/T (24) 

(21) where b and T represent  the threshold value and a 

character is t ic  t ime, respectively, and t denotes the 

t ime to f racture  in log scale. The parameters  b, 

T and r a r e  mater ia l  properties depending on the 

environmental conditions such as temperature ,  etc.  in which n indicates the number of cycles to fail- 

u r e  and t is the t ime to failure. The functions 

W(n) and U(t) a r e  monotonically decreasing func- 

tions of their  arguments.  

It should be noted that the above equations a r e  

valid for a particular volume element; i. e . ,  for  a 

given s t r e s s  distribution they a r e  also valid for 
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the weakest volume element. However, since the 

s t ructural  strength R can be assumed to be equal 

to the strength of the weakest mater ia l  volume ele- 

ment,  the strength deterioration of the s t ructure  i s  

equivalent to the strength deterioration of the weak- 

e s t  volume element. 

In this report  it i s  assumed that subcrit ical  

flaw growth, i .  e. , the time-dependent deter iora-  

tion of s t ructural  strength is negligible under the 

short  duration proof-load test .  This assumption 

seems justified on the basis of the following two 

consider at  ions. 

F i r s t ,  during proof loading the embedded 

flaws in the s t ructure  may undergo some  growth.^ 
If at  the instant of unloading f rom the proof-load 

level the s t ructure  has not failed, then the maxi- 

mum flaw in the structure a t  that moment was less  

than the cri t ical  flaw associated with the proof- 

load level. During unloading, additional flaw 

growth may occur.  However, based on available 

tes t  results for ra tes  of unloading commonly 

employed, e.  8 ,  during pressure  vessel  proof- 

load testing, this additional flaw growth is either 

not detectable or  it i s  negligibly small, 

Second, during proof loading, some rearrange-  

ment of the statist ical  flaw size distribution ma,y 

take place. To this t ime, it has not been possible 

to a s s e s s  the effect of such a change in flaw size 

distribution. Although in some cases  (depending 

on the degree of ductility of the mater ia l )  it can be 

argued that proof loading has a beneficial effect on 

the subsequent strength behavior of the structure 

because of the "shakedown" phenomena, the r&- 

tribution effect on ultimate strength is probably 

negligible compared to other effects. 

Based on the above assumptions and consider- 

ing a loading history a s  shown in Fig. 10, the 

deteriorated strength of the s t ructure ,  after appli- 

cation of the proof load So and n loading cycles 

with amplitude Sc, can be derived from Eqs.  (3) ,  

(4),  and ( 2 2 )  in the following form: 

s C  R(n) = 

= o  otherwise (25) 

where Ro is the s t ructural  strength after proof- 

load application. Similarly, by the use of Eqs.  (3) ,  

(4) ,  (23), and (24), the deteriorated strength after 

application of the sustained load with amplitude Ss 

for a t ime period T following applicationof nload- 

ing cycles with amplitude S is 

S S 

R(n) 

= o  otherwise 

1 1 In Eqs.  (25) and ( 2 6 ) ,  W- (x) and U- (y)  a r e  the 

inverse functions of W(x) and U(y) in Eqs.  ( 2 2 )  and 
(23), which represent  the aumber of cycles-to- 

failure associated with Sc/RO = x and the time-to- 

failure associated with S /R(n) = y, respectively. 

Expressions s imilar  to those in Eqs.  (25) and (26) 

can be derived if the loading sequence of Sc and S, 

is interchanged. 
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V. PROBABILITY OF FAILURE 

- 
Those s t ructures  that have passed the proof-load tes t  a r e  to  be used in actual mission applications. 

The original strength distribution for  these vessels  has been changed by the proof-load test. 
must  be accounted for in the reliability evaluation. 

of the proof load So, then the s t ructural  strength distribution is given by the conditional probability 

This change 

If Ro is the s t ructural  strength af ter  the application 

Use of Eq. (16b) gives 

( 2 8 )  P f o r  X M 1  + + 2 )  1 So(+, -!- 4,2) 1 x 

Equation (28)  is valid when ~ ( 4 , ~  t 9,) is proportional to S (4, + 4,2). If this proportionality does not hold, 0 1  
then the strength distribution, after application of So, is given by 

( 2 9 )  
I* 

f o r  ~ ( 4 , ~  + 9,) 1 so($, + 6 2 )  2 x 

To simplify the algebra,  Eq. ( 2 8 )  i s  used in what follows without essent ia l  loss  of generality. 
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F o r  a spherical  p ressure  vessel  in which 

approximately = +2 = + = constant, 

for  x I So (30) 

The probability of s t ructural  failure po due to the 

p d o f  load So follows then f rom Eq. (16b) a s  

p o = F  ( S ) =  R O  

and for the spherical  p ressure  vessel  this becomes 

Let pc be the probability of s t ructural  failure 

due to n cycles of the cyclic load Sc after So has 

been applied, and let  pcs be the probability of 

s t ructural  failure due to the sustained load Ss for 

a period of t ime T,  given that the s t ructure  has 

survived Sc. Then, it follows f rom Eqs. (22) and 

(23) that 

and 

Pm lo FRO($i i jFSc(X)dx 

r m  

(33) 

In Eqs. (33) and (34), fsc(x) and fs (x) a r e ,  

respectively, the probability density functions 
S 

of Sc and S,, and F R ~ ( * )  i,s given by Eqs. (28)  
or (30). 

The conditional distribution function 

of R(n) given R(n) > 0 can be obtained f romEq.  (25) 

as follows: 

fS (Y)  dY Y 
= jo FRo(W[w-I(<) t q) c 

(35) 

Substitution of Eq. (35) into Eq. (34) yields 

pcs = 

in which it should be realized that W-’(x) = 0 

for x I 1 and F R ~ ( x )  = 0 for x < S 0’ 

The probability of s t ructural  failure due to the 

application of sustained loading S, for  a period of 

t ime T after passing the proof load tes t ,  i. e., 

without applying the cyclic loading Sc, is 

The probability of failure psc due to n cycles 

of Sc, given that the structure has survived Ss 

for a period T after SO, can be obtained in a simi- 

la r  fashion as the probability of failure pcs. 
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VI. OPTIMIZATION 

Obtaininfthe best  possible performance, or 

the least  possible cost, o r  the least  possible 

weight, e tc . ,  is an integral  par t  of every s t ruc-  

tural  design. The optimization task  is to find the 

values of the controllable parameters ,  subject to 

the various constraints,  that make a desired objec- 

tive function an extremum. 

objective function to be optimized is  the s t ructural  

weight o r  the statist ically expected cost: i. e . ,  the 

mean cost due to coupon testing, proof testing and 

In this report ,  the 

be substantial. 

i s  required at the ta i l  end of the.distributions, the 

number of coupon tes t s  and the associated cost 

soon become intolerably high. Thus, in the over-  

a l l  cost  picture,  the required expenditures for  

mater ia l  characterization should be taken into 

account. 

In par t icular ,  if this information 

As indicated by Eq. (28), the truncated s t ruc-  

tural strength distribution FR (x),  after the appli- 
0 

cation of the Droof load, is zero for strength .. 
mission degradation. 

expressible in t e r m s  of the physical parameters  

The s t ructural  weight is  values less  than So. Therefore,  the lower tail of 

the original strength distribution FQ(x) does not 
such a s  density and s t ructural  dimensions, and 

the cost i tems a r e  expressible in t e r m s  of the 

- - A. 

give any contribution to .the probability of failure.  

The uDDer tail of the truncated streneth distribu- 
A I  - 

proof-load t e s t  levels,  as well a s  the physical 

parameters .  

mization process  to determine those proof-load 

tion contributes to the probabilityof failure depend- 

ing on its relative interaction with the upper tailof 

the load distribution. Since the intera6tion between 

It i s  the objective of the presentopti-  

t es t  levels and 

minimum expe 

weight subject 

physical parameters  which yield 

cted cost ,  o r  which yield minimum 

to an expected cost  constraint. 

Coupon testing has a s  its pr ime purpose the 

characterizations of the statist ical  strength prop- 

e r t ies  of the s t ructural  mater ia l .  The efforts and 

costs that must be expended to establish,  with suf- 

ficient confidence, the mater ia l  strength distribu- 

tions for one o r  more environmental conditions can 

load and strength distribution is of a general  f o r m ,  

as shown in Fig.  1, the upper tail  contribution 

FR(x) to the probability of failure diminishes very 
quickly with increasing distance f rom the mean 

strength. Consequently, the greatest  contribution 

of the strength density function to the probability 

of failure during service s tems f rom the region 

close to the proof-load tes t  level (Fig. 1). Since 

the determination of the probability of failure with 
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cer tain confidence requires  knowledge of the d is -  
tribution functions of the load and of the truncated 

subsystems i s  the sum of the statistically expected 

costs ECi for each ith s t ructural  subsystem, which 

strength Ro, it can be inferred that the required 

cost of coupon t e s t s  to enable the determination of 

the probability of failure with cer ta in  confidence 

i s  strongly dependent on the proof-load level. 

This cost will be called coupon testing cost o r  

ma te r i a l  characterization cost. If different s t ruc-  

t u ra l  subsystems a r e  used with differing mater ia ls ,  

the total coupon testing cost is the sum of the 

characterization costs for each mater ia l .  

The expected cost  due to  proof testing is the 

statistically expected cost of s t ructural  testing in 

which one structure after another is tested at  a 

certain proof-load level, until a s t ructure  i s  ob- 
tained that passes  the applied proof load. 

cost includes the cost of the s t ructures  after the i r  

completion plus the actual cost of proof testing. 

A s  Eq. (31) clearly indicates, this s t ructural  

qualification cost is a lso strongly dependent on the 

proof-load tes t  level. 

the t e r m  structure  r e fe r s  he re  to s t ructural  sub- 

systems such as s f ru ts ,  p re s su re  vessels ,  e t c . ,  

and that the s t ructural  system, such as a space- 

craft  s t ruc ture ,  may consist of more  than one sub- 

system. 
require qualification, then the total  proof testing 

cost is the sum of the statistically expected costs 

due to proof testing for each subsystem. 

This 

It should be recalled that 

If a number of s t ructural  subsystems 

F r o m  a s t ructural  utilization point of view, 

it is not only important to consider the costs of 

coupon testing and proof testing, but also the cost 

that will be incurred if the s t ructure  fails  during 

the t ime of i ts  use.  In space applications, this 

cost may range f rom cost of total mission loss to 

negligibly small  cost ,  depending on whether s t ruc-  

t u ra l  failure occurs  at the beginning of a mission 

o r  after the mission objectives have been fulfilled. 

This cost would also depend on whether s t ructural  

failure causes complete destruction o r  only some 

mission degradition. The statist ically expected 

value of this cost ,  which will be called mission 

degradation cost ,  i s  the product of the actual cost 

of mission degradation and the probability of 

occurrence of this degradation, which is the prob- 

ability of s t ructural  failure. 

The preceding discussion indicates that the 

total statistically expected cost  EC for  n s t ructural  

can be written a s  

n 

i=l  

where the three t e r m s  on the right side of Eq. 

(38b) represent  coupon testing cost ,  proof testing 

cost ,  and mission degradation cost, respectively, 

of the ith subsystem. 

the ith strGctura1 subsystem is  the ratio of the 

proof load Soi to  the mean s t ructural  strength Ei;  
C. i s  the coupon testing cost for the ith s t ructural  

subsystem; qi  i s  the expected number of the ith 

s t ructural  subsystem failing before the one s u r -  

viving the proof load is obtained; Coi i s  the cost  of 

losing one of the ith s t ructural  subsystem during 

proof load; C 

dation; pfi i s  the probability of s t ructural  failure 

of the ith s t ructural  subsystem during the mission. 

The approximation of the summation sign for the 

mission degradation cost in Eq. (38) i s  on the 

conservative side (Refs. 2 and 3). It follows from 

the developments in the previous section, that pfi 

i s  not only a function of e i  but also of the central  

safety fac tor ,  v i  = Bi/gi, which is the ratio of 

mean strength wi to  mean load Si. o r  of some 

other central  measure of location. It should be 

noted that v. is numerically different f rom the 

conventional safety factor,  which is usually based 

on percentiles of Ri and Si, but plays, in principle, 

the same role. 

The proof t e s t  level E i for 

is the actual cost of mission degra-  f 

- 

The equations in Section V are valid for any 

ith s t ructural  subsystem. Since Soi = E.R the 

probability of failure poi of the ith s t ructural  sub- 

system due to the proof load Soi given by Eq. (31) 

can be expressed in t e r m s  of E.. It can be shown 

that 

1 i ' 

which gives the functional dependence of qi 

on E i' 

(39) 
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The coupon testing cost requires  some expla- 

Note that it is the subsystem that i s  sub- 

F o r  this reason, the origi- 

nation. 

jected to proof testing. 

nal subsystem strength R i  is  truncated into Rei. 
Since the distribution of Ri  and hence the distribu- 

tion of Roi a r e  derived from the distribution of the 

coupon strength Rci for the ith subsystem (i. e.,  Eq. 

(1 l ) ,  and since only the strength distribution func- 

tion associated with the strength value Ri 2 Soi 

(i. e., Roi), i s  needed in evaluating the probability 

of failure,  it is necessary to establish the coupon 

strength distribution, with cer ta in  statist ical  con- 

fidence, only for those coupon strength values 

R C i  > SCi with SCi being the value associated with 

the truncation point Soi (or  proof load) of the sub- 

system strength. Let Ti be the ratio of SCi to the 

mean coupon strength xci for the ith subsystem; 

i. e., ~i = Sci/Eci. The functional dependence of Ci 

onTi  should be such that Ci is increasing with in- 

creasing absolute difference between T i  and 1, i.e., 

with ITi - 11 (see  Ref. 3 for  a detailed discussion). 

Thus Ti should be expressible a s  a function of ~i so  

that Ci  in E;. (38) can be writ ten a s  a function of 

~ i .  In this report ,  the following assumptions a r e  
made: (1) in the Weibull distribution, the param- 

eter  xo is  equal to zero ,  and ( 2 )  in Eq. (16b), for 

each ith s t ructural  subsystem the expression 

(4 + Q ) i s  independent of the space coordinates. 

While the f i r s t  assumption is not particularly 

res t r ic t ive,  the second assumption implies a 

homogeneous s t r e s s  field within each s t ructural  

subsystem. With these two assumptions, and 

using Eqs. (11) and (16b), it can be easily shown 

tha tTi  = c i .  

- 

1 2  

It is now assumed that the coupQn testing cost  

for the ith s t ructural  subsystem can be approxi- 

mated by an  expression of the following form 

(Ref. 3): 

If E .  < 1, the significant par t  of the truncated 

strength distribution for the evaluation of the 

probability of failure is located between the proof- 

load level'and the central  portion of the strength 

distribution, whereas,  if E .  > 1, the significant 

par t  l ies beyond the central  portion of the distribu- 

tion. 

certain confidence, this suggests that a la rger  

sample of coupons is required if c i  > 1 a s  com- 

pared to e i  < 1 f o r  the same value / E  - 11. 

To establish the strength distribution with 

i 

When one considers the preceding remarks  

and divides Eq. (38) by Cf, the total  relative 
expected cost EC' = EC/C and the relative 

expected cost for  the ith subsystemECr = ECi/Cf, 

become 

f 

where a. = Ai/Cf, p i  = Bi/Cf and yi = Coi/Cf. 

Note that p .  and yi indicate the relative importance 

of the ith subsystem with respec t to the  actual cost 

of mission degradation if the ith subsystem fai ls  

and, a s  will be shown la te r ,  these values a r e  the 

important parameters  in the optimization process .  

The optimization problem can now be stated 

a s  either one of minimizing the s t ructural  weight 

subject to a constraint on the relative expected 

cost given in Eq. (41), o r  one of minimizing the 

relative expected cost EC9' subject to a constraint 

on the s t ructural  weight. 

essentially the same. 

Both approaches a r e  

In this  report ,  the optimiz- 

ation problem is stated a s  follows: 
m.  

C i ( c i )  Ai t biBi)Ei - 11 ' (40) Minimize the total  s t ructural  weight G sub- 

ject to the maximum expected cost constraint 
EC" Eta. where A .  i s  the minimum cost of coupon tes ts  

necessary for the determination of the mean value 

of coupon strength with certain confidence. 

t e r m s  Bi and m. a r e  constants, and 6 .  is a constant 

that may take diifferent values 6' and'6; for t i  > 1 

and e i  < 1, respectively. 

The objective function 
The 

n 

Gi G =  i 
i z l  
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with G. being the i th subsystem weight, can be equality sign should hold in the constraint. Note 

writ ten a s  a l inear function of the design variables that the central  safety factor v i  in Eq. (41) can be 

, n) ,  where h. may, e .  g., represent  expressed a s  a function of h j=1 ,2 ,  a ,  n; i.e.,  h i ( i=1,2,  * * e  

the cross-sectional a r e a  of the ith subsystem s t ru t  

o r  the thickness of the ith subsystem pressure  

vessel;  thus 

j '  
V .  = v i  (hl ,  hZ, 
Lagrangian multipliers,  one can show that at opti- 

mum the following equations hold: 

a ,  hn). Using the method of 

n 

G = x g i h i  
i= 1 

where g. represents  functions of physical and geo- 

metr ical  parameters  of the ith subsystem. 

It is emphasized that if the proof-load tes t  is Equation ( 4 3 )  states  that for an optimum structural  

weight, the proof-load level E. to be applied to the 

ith s t ructural  subsystem should also be optimum 

in the sense that corresponding to a given safety 

not performed or is  not considered ( i . e . ,  if all 

qi(c.) = 0), and if  the mater ia l  properties a r e  well 

known to engineers so that coupon tes t s  a r e  not 

needed (i.e.,  if a l l  a. = p = 0) ,  then the maximum factor v .  the relative expected cost should be i i  
constraint EC* becomes the maximum constraint minimum a t  that  level. a 

As for  the optimization technique, depending of the probability of failure,  and the problem 

reduces the optimum design based on a reliability on whether the structural system is statically 
constraint criteri_a that is  discussed in Refs. 16-21. determinate or statically indeterminate, the i te ra -  

tive procedure or the gradient move method can 

since the objective function i s  linear in h. the be employed, respectively. This subject is dis-  

constraint is always active; i. e., at optimum, the cussed in detail  in Ref. 2. 

Since Eq. (41) is the only constraint ,  and 

1' 
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VII. NUMERICAL EXAMPLE 

A 20-in. -Tiam spherical  p ressure  vessel  is 

to be designed to sustain an  internal pressure  Ss 

after proof testing for  360 h. . 
vessel  is to be minimized for an  appropriate choice 

of proof-load level € ( o r  So) and vessel  wall thick- 

ness  h in such a way that the total  relative expected 

cost  EC" does not exceed a cer ta in  assigned value 

EC: (constraint). 

assumed to be normally distributed with mean 

value 5 = 1000 psi  and 2% coefficient of var ia-  

tion. (Since only one subsystem is  considered, 

the subscript i is dropped.) It is assumed that the 

mater ia l  is titanium Ti-61A-4V and that the coupon 

strength has a Weibull distribution with a mean 

value of 8, 160,000 psi  and coefficient of varia- 

tion of 1070, with a coupon size of 8 in. long, 1/2 
in. wide and 1/4 in. thick. Based on the discus- 

sion in Section VI, it  is further assumed that in 

Eq. (40), 6 -  = 1 for  E < 1 and 6' = 2 for  E > 1, 

and m = 1. The vessel is to be designed for  room 

temperature  a t  which the parametr ic  values in 

Eq. (24) for U(t) a r e  b = 0 .5 ,  r = 0 . 5  and 

T = 0.713. The s t r e s s  field is assumed to be 

such that 

The weight of the 

The sustained pressure  is 

= 4,z = + = constant. 

The Weibull distribution for the coupon 

strength is  given in Eq. ( l l ) ,  f rom which, it fol- 

lows that 

and 

(45) 

where r~ 

coupon st:ength equal to 0.1,  and Rc is the mean 

coupon strength equal to 160,000 psi .  Hence, the 

parameter  k can be evaluated f rom Eq. (44), and 

then xo can be computed f rom Eq. (45). 

is the coefficient of variation of the 

In accordance with the discussion in  the p r e -  

vious sections,  

d 4, = -  
4h 

w v = -  
SS 

(47) 

(48) 
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in  which the daimeter  of the vessel  d = 20 in . ,  the vesse l  mater ia l  volume V = ad'h, and the proof load 

level E = So/R with So being the proof load. 

According to Eq. (37), the probability of vessel  failure due to S s ,  after the vessel  passed the proof 

tes t ,  can be writ ten as 

where u = 0.02 is the coefficient of variation of S and where ps = pf. 

The introduction of the transformation y = x/E into Eq. (51) yields - 

In this particular example, since there is only one subsystem, Eq. (41) can be writ ten a s  

EC* = a t 6 p I ~  - II t q(E)y t p f ( E , v )  (53) 

in  which the subscript  i has been dropped and it can be shown that the optimum values of Y and E can be 

determined f rom the following two equations: 

Q :: 
EC = ECa (54b) 

The relative expected cost EC'. in Eq. (53) is plotted as a function of E for  different values of y and p 
with q(c) and p ( E ,  v )  being given by Eqs. (50) and (52). These plots a r e  shown in Fig. 11 for  a particu- 

lar value v = 2. 1. 'i'ue constant value a in Eq. (53) has been disregarded in these f igures ,  since it has 

no effect on the optimization process .  

sponding shift paral le l  to the EC* axis. 

f 

Including a nonzero value for  a would give to the plots a cor re-  

Those values of E for which EC"; becomes minimum for a given v a r e  denoted by E". The solution 

space of the optimum design, Eq. (54), can then be constructed by plotting the locuses for  different 

values of Y a s  shown in Fig. 12.  

the optimum design space. 

This figure is the extended version of F i g .  11, and is referred to as  
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The optimum design procedure can now be 

summarized as follows: 

Construct the optimum design space, 

e .  g., Fig. 12. 

Read v and E *  f rom the optimum design 

space constructed in step (1) for speci- 

fied constraint EC: and given values of 

y and p. 

With the safety factor v obtained in step 

( 2 ) ,  the optimum (minimum) thickness h 

of the vessel  o r  the minimum weight G 

can be determined f rom Eq. (49). 

If the relative expected cost  EC* is to be 

minimized, subject to the constraint on the vessel  

wei.ght (or safety factor v ), the relationship of 

Eq. (54a) i s  st i l l  valid but Eq. (54b) should be 

replaced by v = v 

a 

Hence, the minimumrelative a' 

expected cost design can be obtained either by 

plotting ECQ a s  a function of E for given P , y ,  and 

constraint v such as Fig. 11, to  find E *  and 

minimum EC''., o r  by reading E-'' and minimum 

EC" directly f rom the optimum design space con- 

structed previously, for a specified constraint 

v and given value of y .  Numerical resu l t s  for  

three specific cases  a r e  given in Table 1. 

= :. 

a 

It should be noted that if the proof-load t e s t  

is not performed o r  not considered (i. e . ,  if 

q(E) = 0) ,  and if the mater ia l  property is well 

known so that  the coupon tes t s  a r e  not needed 

(i.e.,  if (Y = p = 0) ,  then the maximum constraint 

EC" on the relative expected cost  becomes the 

maximum constraint on the probability of failure.  

The problem reduces then to the optimum design 

based on the reliability c r i te r ia .  This design i s  

termed "Standard Optimum Design" in Table 1. 

a 
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Table 1 .  Optimum design of p ressure  vessel  

Standard Optimum 
Designa 4 y. = 10-5 y = 1 0 -  6 y = 1 0 -  7 y = 1 0 -  

0.1869 

1.11634 

2130 

1.9082 

0 . 7 9 3 4 x   IO-^ 

0.1746 

1.179 

2113 

1 a 7925 - 
0.174 x 

p = 0.0, EC$ = 

0.2086 0.2472 

1.00845 0. 8568 

2128 2113 

2.1104 2.4668 

0.4787 X 0.4223 X 

0.1852 

1 .114 

2108 

1 .  8926 

0.177 x  IO-^ 

0.6311 0.300 

0.70928 0 . 0  

2089 0 . 0  

2.9450 5. 8300 

0.706 x  IO-^ 

p = 0 . 0 ,  EC: =  IO-^ 

0.2065 

1.0091 

2110 

2.091 

0.472 X 

0.2447 

0. 850 

2088 

2.444 

0.72 X 10- 6 

0.5134 

0 . 0  

0 . 0  

4. 8238 

 IO-^ 

p = 0 . 0 ,  ECE = 

0.1661 0.1727 0.1833 0.2042 0.4176 

1.2172 1.179 1.116 1.008 0 . 0  

2090 2094 2091 2087 0 . 0  

1.713 1. 775 1 .  874 2. 07 3.99 

0.374 X 0.2115 X 0.1242 X 0.5731 X 

p = E C ~  =  IO-^ 

0.1765 

1.169 

2117 

1. 81 

0.1042 X 

0.1870 

1.096 

2093 

1.91 

0.8236 X 

0.2066 

1.0086 

2110 

2. 092 

0.4639 X 

0.2484 - 

0. 8510 

2089 

2.477 

0.6941 X 
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Table 1 (contd) 

Paramete r 

Thickness 
h, in.  

€ *  

So, psi  

V 

Pf 

Thickness 
h, in.  

€ *  

So, psi  

V 

Pf 

Thickness 
h,  in. 

a *  

SO, psi  

V 

Pf 

Standard Optimum 
Design a 4 Y = 10- 5 Y = 10- -6 Y = 10 7 Y = 10- 

0.1665 

1.2170 

2088 

1.716 

0.34 x 

0.1734 

1.1865 

2114 

1. 781 

0.176 x 

0.1671 

1.216 

2090 

1.7218 

0.1 x 

0.1728 

1.178 

2092 

1.776 

0.1642 X 

.O. 1834 

1.115 

2090 

1.876 

0.1207 X 

0.2042 

1.008 

2087 

2. 07 

0.573 

4 p = EC: = 0.5 x i o -  

0.1807 

1.138 

2104 

1. 850 

0.349 x  IO-^ 

0.1744 

1.170 

2094 

1.791 

0.1277 X 

~~ 

0.1920 

1.073 

2098 

1.960 

0.358 X 

0.2158 

0.9594 

2090 

2.178 

0.253 x 

p = io -4 , EC: = 

0.185 

1.107 

2093 

1. 891 

0.93 x 

a The Standard Optimum Design is possible only when p = 0. 

0.2042 

1.008 

2087 

2.070 

0.574 x  IO-^ 
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VIII. DISCUSSION AND CONCLUSION 

Using Eq. (53), one obtains curves of the re l -  

ative expected cost EC" versus  proof load level E 

for different p, and for  different safety factors v. 

Figure 11 shows representative curves for  four y 

values, three p values, and a particular safety 

factor v = 2.1. In Fig. 11, the relative expected 

cost EC" changes very  little for  E l ess  thanapprox- 

imately 0.85. 

haves similarly,  indicating that there  i s  no advan- 

tage in conducting proof testing below a certain 
- 5  value o f t .  In a l l  three cases ,  p = 0, p = 10 and 

/3 = the optimum proof-load levels a r e  in  the 
vicinity of E = 1. 0 with a slight and expected ten- 

dency of the optimum proof-load levels E "  toward 

unity with increasing p. It is due to this fact that 

under reasonable relative expected cost con- 

straints,  the optimum proof-load level E * will fall 

with great  1ikeliPood within the range of two stan- 

dard deviations around the mean value x. 
the designer's point of view, this i s  desirable, 

since in general, a considerably grea te r  number 

of coupon tests i s  required for  characterizing the 

truncated strength distribution with a certain level 

of statist ical  confidence i f  E "  falls outside this 

region. 

very sensitive to changes of E in cer ta in  regions, 

Fo r  other safety fac tors ,  EC" be-  

F r o m  

It i s  noteworthy that for  v = 2. 1, EC" i s  

s u c h a s O . 9 S e  S l . O a n d ~ > l . l ; ~ >  0 . 9 7 ,  EC" 

i s  also sensitive to y .  

a lso  for  safety factors different f rom v = 2. 1.  

Similar statements hold 

In F ig .  12, the relative expected cost EC" i s  

plotted a s  a function of the optimum proof-load 

level E "  fo r  the same three values of p a s  in  F ig .  
11. 

the lines for  v = 2.1 give the optimum points 

indicated in  Fig. 11, while the lines for the other 

values of v reflect the optimum points of s imilar  

curves a s  those in  Fig. 11. 

Figure 12 i s  an  extension of F ig .  11 in  that 

The f i r s t  set of curves for p = 0 in  Fig.  12 

shows that when the coupon test  i s  not needed, the 

relative expected cost EC* can be made a s  smal l  

a s  desired simply by decreasing E "  and increasing 

the safety factor v ,  or  the weight which, in  this 

case,  is proportional to v .  This result  is a con- 

sequence of the fact that EC" is not, in  this case,  

a function of the cost of coupon test .  If the cost of 

coupon testing is considered (i. e . ,  i f  f3 # 0 a s  for 

the second and third se t  of curves i n  Fig. 12), then 

the relative expected cost EC" has a lower limit. 

This implies that i n  such cases  a relative expected 

cost constraint l ess  than this lower limit yields no 

feasible solution. It is evident f rom Fig. 12 that 
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for  p # 0 the absolute optimum proof-load level i s  

in the vicinity of E *  = 1. 0 fo r  p = 10-5withv = 2 . 2  

and fo r  p = 10 with v = 2.1. Additional details 

regarding.the influence of the cost of coupon tes t s  
on the optimum design a r e  given in  Ref. 3. 

-4 

Table 1 gives specific numerical  resu l t s  for 

different values of p and for specified relative 

expected cost constraints EC:. It i s  particularly 

instructive to compare the resu l t s  of the Standard 

Optimum Design E* = 0 with those of the optimum 

design considering the proof-load tes t ;  i. e . ,  for 

y = 10- to Not only i s  considerable weight 

saving realized (weight i s  proportional to h), but 

also a great  reduction of the probability of failure 

pf i s  obtained if  the proof-load level i s  considered 

a s  a design variable. 

saving of the optimum design with proof-load tes t s  

a s  compared to the design without proof-load tes t s  

is  much higher in  this case than in  the examples 

given in Refs. 2 and 3. 

present case, the coefficient of variation of the 

strength R of t he  vessel  (uR = 100J0) i s  higher than 

the coefficient of variation of loading (us = 2%) so  

that the probability of failure comes mainly f rom 

the lower portion of the strength distribution, 

which is truncated by the proof-load. In Refs. 2 

and 3, low-dispersion mater ia l  (u 
for high-dispersion loading (us = 20%). 

that the proof-load test  improves the statist ical  

confidence of the reliability es t imate  i s  discussed 

in Refs. 2 and 3. 

7 

The percentage of weight 

This i s  because in  the 

= 5%) i s  used 

The fact 
R 

As in Refs. 2 and 3, the conclusion can be 

drawn here  that the weight saving of the optimum 

design depends to a large degree on the parameter  

value y .  
lose more vessels  during proof-load testing; i. e . ,  

higher values of E can be applied and these result  

in  higher strength vessels  and the saving of 

structural  weight. This follows from F ig .  12 and 

Table 1. 

F o r  low values of y. one c'an afford to 

A general conclusion that can be 6rawn from 

the preceding discussion i s  that in  proof testing 

structural  subsystems i t  i s  to be expected that 

some of these subsystems will be lost. In fact, in 

many cases where E = 1 . 0 ,  i t  should be expected 

that approximately half of these subsystems wi l l  

be destroyed during proof testing for the achieve- 

ment of minimum expected cost EC". This is  

often incompatible with prevalent thinking during 

project applications, particularly if  the subsys- 

tems a r e  pressure  vessels.  It i s  often expected 

that no pressure  vessel  will be destroyed during 

proof testing and that pressure  vessels  a r e  de- 

signed to fulfill that expectation. 

that p ressure  vessels  a r e  designed for the proof 

load rather  than the expected mission environment 

and..are proof tested a t  a level E that corresponds 

to the nearly horizontal portion of the curves for 

EC" in  F ig .  11. As stated above, proof loads a t  

such levels have no advantage i n  te rms  of expected 

cost. 

This implies 

In the development of this report ,  various 

simplifying assumptions were made that could be 

relaxed in  a more extensive study. 

i t  i s  believed that the results of this report  a r e  

representative and would not undergo major  quali- 

tative changes i f  these assumptions were  relaxed, 

although quantitative changes would be expected. 

These major  assumptions and some of their  impli-  

cations a r e  discussed below. 

Nevertheless, 

The f i r s t  specific assumptions were  that (1)  

the statist ical  variation of the mater ia l  strength i s  

only due to the flaw size parameter  a = ( a / Q ) .  i n  

Eq. (3),and ( 2 )  i t  i s  sufficiently accurate  to use the 
mean value of 4 5 "  for the flaw orientation so that 

the computational effort involved becomes tractable.  

The f i r s t  assumption i s  not important in  the p re -  

sent development because the results derived here  

a r e  based on experimentally determined statist ical  

distributions of mater ia l  strength by coupon tes t s  

rather than a determination of the strength based 

on the statist ical  distribution of flaw size.  The 

second assumption, which implies that failure 

occurs when the sum of the two principal s t r e s ses  

exceeds a c r i t i ca l  value (Eq. 16), is considered a 

reasonable f i r s t  approximation for cases  in  which 

both principal s t r e s ses  a r e  tensile s t r e s ses ,  a s  in 

thin pressure  vessels.  It i s  believed, however, 

that this assumption warrants  additional extensive 

investigations based on Eq. (14) with the objective 

of determining, for various combinations of pr in-  

cipal s t r e s ses ,  the effect of the distribution of 

flaw orientation on the strength distribution FR(S) .  

j 1 

Another assumption is that strength deterio- 

ration due to time effects, i . e . ,  due to cyclic 

loading and sustained loading, can be represented 
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by equations with deterministic parameters  as  

shown in Section IV. This assumption can only be 

accepted in  a qualitative fashion, since it i s  known 

f rom experience that the time-to-failure of a spec- 

imen has a considerable statist ical  variation even 

if  the initial flaw size i s  the same f rom test  to test .  

Considerable additional investigations, both exper- 

imental  and analytical, a r e  required befare this 

problem can be adequately understood; perhaps it 
must  be assumed that the parameters  involved in 

Eqs. (20) and (21) a r e  statist ical  variables.  

In Section VI, the assumption that xtL = 0 in  

the Weibull distribution i s  equivalent to saying that 

there  i s  no s t r e s s  threshold value below which no 

failures occur. It i s  expected that this assumption 

has little effect on the results of the present 

investigations , since the proof load eliminates the 

lower end of the strength distribution. 

Equation (38) represents  the statist ically 

expected cost  that i s  used in the optimization pro- 

c e s s  as  a constraint. In this process,  it i s  implied 

that the cost  has-a statist ical  distribution, which 

i s  not considered in this report. If the cost  con- 

s t ra int  i s  stated s o  that the probability of exceed- 

ing a given cost level i s  required to remain less  

than a cer ta in  value, it i s  necessary to also con- 

s ider  the statist ical  distribution of the cost. 

aspect of the problem has not yet been t reated in 

the l i terature.  

This 

A further assumption in this report  (not ex- 

plicitly stated) i s  that the mission load statist ical  

distribution i s  independent of t ime, although the 

most  important problems deal with dynamic loads 
and wide time changes of the environments, such 

as temperature fluctuations, radiation, etc. It i s  

expected that the investigation in  this report  i s  

only quantitatively influenced by these environ- 

mental  changes while, qualitatively, the resul ts  

a r e  s t i l l  valid. 

The objective function in this report  i s  the 

weight of the s t ructural  system. Other objective 

functions can be chosen, of course;  for instance, 

the expected cost ,  o r  the reliability, can be used 

a s  an objective function that i s  to be minimized or 

maximized. F o r  electronic systems,  in which the 

subsystems a r e  the electronic components o r  the 

integrated circuits that a r e  proof tested before 

use,  weight i s  usually not the cr i t ical  quantity to 

be minimized. In such cases ,  cost  o r  reliability 

would be n o r e  appropriately extremized. 
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Fig. 1, Typical load and strength distributions 
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Fig. 2 .  Elliptically shaped flaws: (a )  surface flaw; (b) embedded flaw 
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30 JPL Technical Memorandum 33-470 



-500 

v, 
v, 

Y 
s 
0, 

2 
d 

I 

w 
p: 

U 

LL 

-400 -300 -200 -1 00 0 100 200 300 

TEST TEMPERATURE O F  

Frac ture  toughness of annealed 6A1-4V titanium plate Fig. 5. 
a t  various tes t  temperatures 

4m 
THICKNESS h 

Fig. 6. Frac ture  toughness variation with mater ia l  thickness 

JPL  Technical Memorandum 33-470 31 



YIELD FAILURE LINE 
/- 

CONSTANT FRACTURE TOUGHNESS 

\\ 7 CONSTANT STRESS INTENSITY 

FLAW SIZE (a/Q) 

Fig. 7. Applied s t r e s s  vs flaw size,  for  plane s t ra in  

1 .o 

0.8 

0.6 

0.4 

0.2 

0 
1 10 100 1,000 

CYCLES TO FAILURE, N 

Fig. 8. Operational life curves,  lower bound, cyclic load 

10,000 

3 2  JPL Technical Memorandum 33-470  



1 .o 

0.9 

0.8 
2219-T87 ALUMINUM 

- 0 0.7 

'- 
y 0.6 

0.5 

y. 

0.4 

- 
- 

- 
0.3 

0.01 0.1 1 .o 10 

TIME TO FAILURE, h 

Fig. 9. . Operational life curves, lower bound, sustained load 

1 PROrF LOAD 
- 1000 cycles 100 hours 
2 
2 

I 
TA TB TC TC TD 

T W  

(a). TYPICAL LOAD HISTORY FOR PRESSURE VESSELS 

LOAD 

100 

I 
I 
I 
I 
I 
I 

I 100 hours 
c 

TIME 

(b). STRUCTURAL LIFE PREDICT1 ON AND OPERATING 
LOAD DETERMI NATl ON 

Fig. 10. Typical schematic design case: (a )  load history for pressure  vessels;  structural  
life prediction and operating load determination 

JPL Technical Memorandum 33-470 33 



* 
z1 

W 

2 
4 
W 

.34 

0.7 0.8 0.9 1.0 1.1 1.2 1. 3 
P R O O F  STRESS LEVEL c 

Fig. 11. Relative expected cost  a s  a function of 
proof-load level for varying values of p 

L v.2.1 

0.7 0.8 0.9.1.0 1.1 1.2 1.3 

_ _  
0.7 0.8 0.9 1.0 1.1 1.2 1.3 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

OPTIMUM PROOF STRESS LEVEL E* 

0.7 I 0.8 0.9 1.0 1.1 

Fig. 12. Relative expected cost  a s  a function of 
optimum proof-load level for varying values of p 

1.2 ~ 1.3 

JPL Technical Memorandum 33-470 
NASA - IPL - Cod., LA..  Calif. 



TECHNICAL REPORT STANDARD TITLE PAGE 

9 .  Performing Organization Name and Address 

JET PROPULSION LABOMTORY 
California Institute of Technology 
4800 Oak Grove Drive 
Pasadena, California 91107 

12. Sponsoring Agency Name and Address 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIQN 
Washington, D.C. 20546 

I IO. Work Unit No.  

71. Contract or Grant No.  

13. Type of Report and Period Covered 

Technical Memorandm 

14. Sponsoring Agency Code 

, 15. Supplementary Notes 

16. Abstract 

Spacecraft structural systems and subsystems are subjected t o  a number of 
qualification t e s t s  i n  which the proof loads are chosen a t  some level above 
the simulated loads expected during the space mission. Assuming fracture 
as a prime fai lure  mechanism, and allowing for time effects due t o  cyclic 
and sustained loadings, this  paper t rea ts  an optimization method i n  which 
the statistical. variabil i ty of loads and material properties are taken into 
account, and in which the proof load level is used as an additional design 
variable, In  the optimization process, the structural weight is the objec- 
t ive  furaction w h i l e  the to t a l  expected cost due t o  coupon testing for  
material characterization, due t o  fa i lure  during proof testing, and due 
t o  mission degradation is  a constraint, Hmerical results indicate that  
for a given expected cost constraj.nt, substantial weight savings and im-  
provements of r e l i a b i l i w  can be realized by proof testing, 

17. Key Words (Selected by Author(s)) 18. Distribution Statement 

C h i 1  Engineering Unclassified -0  Ulalimited 
Interplanetary Spacecraft, Advanced 
Planetary Spacecrdt , Advanced 
(Stractwal Engineering 

Unclassified 



HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE 

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the 
report cover. 
blank. 

Use all capital letters for t i t le (item 4). Leave items 2, 6, and 14 
Complete the remaining items as follows: 

3. Recipient's Catalog No. Reserved for use by report recipients. 

7. Author(s). Include corresponding information from the report cover. In 
addition, list the affi l iation of an author i f  i t  differs from that of the 
performing organization. 

8. Performing Organization Report No. Insert i f  performing organization 
wishes to assign this number, 

10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), 
which uniquely identifies the work unit under which the work was authorized. 
Non-NASA performing organizations wil  I leave this blank. 

11. Insert the number of the contract or grant under which the report was 
prepared. 

Enter information not included elsewhere but useful, 
such as: Prepared in  cooperation with. ~. Translation of (or by). . ~ Presented 
at conference of.. ~ To be published in.. . 

Include a brief (not to exceed 200 words) fdctual summary of the 
most significant information contained in  the report. If possible, the 
abstract of a'classified report should be unclassified. 'If the report contains 
a significant bibliography or literature survey, mention i t  here. 

the principal subiects covered i n  the report, and that are sufficiently 
specific and precise to be used for cataloging. 

15. Supplementary Notes. 

16. Abstract. 

17. Key Words. 
I 

Insert terms or short phrases selected by the author that identify 

~ 

18. Distribution Statement. Enter one of the authorized statements used to 
denote releasability to the public or a limitation on dissemination for 
reasons other than security of defense information. Authorized statements 

'are "Unclassified-UnI imited, I' W:S. Government and Contractors only, 'I 

"U. S.' Government Agencies only, It and "NASA and NASA Contractors only. I' 

19. Security Classification (of report). NOTE: Reports carrying a security 
classification wi l l  require additional markings giving security and down- 
grading information as specified by the Security Requirements Check1 i s t  
and the DoD Industrial Security Manual (DoD 5220.22-M). 

used in  preparing announcements, bib1 iographies, and data banks, i t  should 
be unclassified i f  possible. 
rately the classification of the t i t le and the abstract by following these items 
with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for 
classified items. 

20. Security Classification (of this page). NOTE:: Because this page may be 

I f  a classification i s  required, indicate sepa- 

21. No, of Pages, 

22. Price. 

Insert the number of pages. 

Insert the price set by the Clearinghouse for Federal Scientific and 
Technical Information or the Government Printing Office, if known. 


